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ABSTRACT

Range-space methods for convex quadratic programming improve in efficiency as the number
of constraints active at the solution decreases. This paper describes in detail three alternative
range-space methods, each based upon updating different matrix factorisations. It is shown that
the choice of method depends upon the relative importance of storage needs, computational
efficiency and numerical reliability.

The updating methods described are applicable to both primal and dual quadratic program-
ming algorithms that use an active-set strategy.
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1. ntWroduction 1

1. lutrdueUlM

This paper is concerned with methods for solving t p convex quadratic programming problem -

the minimization of a positive-definite quadratic form subject to a set of linear constraints on the
variables. We shall assume the problem to be stated in the following form:

Q ip mimile Crm + srHs
P sE 2

subject to I< As < u,

wher H is a symmetric positive-definite matrix, and A is m X a. (The methods to be described
may be applied directly to equality constraints, which are omitted for simplicity. The adaptation

* of one of the methods to exploit the structure of simple bound constraints is described in Gill et

al., 1982.) The vector function g(z) - c Hz will denote the gradient of the quadratic objective
function.

Apart from the requirement of feasibility, the optimality conditions for problem QP involve
only the constraints active (exactly satisfied) at the solution. Let * denote the (necessarily
unique) solution of QP. Let A* denote the matrix whose rows are the active constraints, and 6*
the vector of corresponding components of I or u, so that AY - b= , with strict inequality in all
other constraints. Let L denote the set of rows in A! corresponding to active lower bounds, and
U the set of rows in A! corresponding to active upper bound#. There must exist a vector )' such
that

A c = - + Hd' = V(:*), (1.1)

where
2! 0, i EL 0~i , i E U.

Active-set methods are based on developing a prediction of the active set (the working set),
which includes the constraints exactly satisfied at the current point (see, e.g., Gill and Murray,
1977). Let z% denote the current iterate, and Vk its gradient; the t5 rows of the matrix A, are
defined as the coefficients of the constraints in the working set, and the vector b% is composed of
the corresponding components of I and u (so that Akz, = bs). The search direction p% is chosen
so that zi + Ps is the solution of a quadratic programming problem with the original objective
function, subject to the equality constraints of the working set. With this definition, pg. is itself
the solution of the quadratic program

miniise irp +- p (1.2)
subject to Akp = 0.

The optimality conditions for (1.2) imply that there exists a vector of Lagrange multipliers
(denoted by Xa) such that

ArX, = 1, + Hp&. (1.3)

If n, is feasibl, and A - A, It follows from (1.1) and (1.3) that x, + Pl = j? and Xk =
Otherwise, the working set Is changed by adding or deleting constraints until the correct active
set is determined.

.. . . . . . . . . . . . .



Range-Space Methods for Convex Quadratic Programming

It is useful to classify active-set QP methods as either range-space or null-space methods.
This terminology arises because the working set can be viewed as defining two complementary
subspaces: the range space of vectors that can be expressed as linear combinations of the rows of
Ah, and the null space of vectors orthogonal to the columns of Aj%. Each iteration of a quadratic
programming method involves computing ph (and sometimes X,5), and in many cases the work
required in an iteration is directly proportional to the dimension of either the range space or
the null space. For example, the methods of Murray (1971), Gill and Murray (1978), Bunch
and Kaufman (1980) and Powell (1981) are null-space methods, and are most efficient when the
number of constraints in the working set is close to n, since the dimension of the null space is
then relatively small. (Some methods cannot be categorized as either range-space methods or
null-space methods. See, for example, the methods proposed by Bartels, Golub and Saunders,
1970, Fletcher, 1971, and Goldfarb and Idnani, 1981.)

This paper is concerned with range-space methods, which increase in efficiency as the number
of constraints in the working set decreases. In Sections 2, 3 and 4 we describe three alternative
range-space methods. The differences in the methods arise because of the different emphasis placed
on the relative importance of storage needs, computational efficiency and numerical reliability.
In all cases we shall discuss primarily the details of how to compute ph and Xh, and not the
various strategies for altering the working set. The techniques described may be applied in the
implementation of both primal and dual quadratic programming algorithms that use an active-set
strategy.

As general background for rang-space methods, we observe that the constraints and op-
timality conditions for problem (1.3) imply that Ph and Xh satisfy the n + th linear equations

(H -Ar \( Ph. _ 9
Ah 0 Xr >O'

which may be solved in several different ways. The range-space approach takes advantage of
the case where H is non-singular. If Ak has full rank, ph and Xh are defined by the following
range-space equations:

A- h = AH H ; (1.4)
and

Hp = AfX-h (1.5)

I which underlie all the methods of this paper.

2. Method I: a low-storage method

Probably the most straightforward range-space method is obtained by utilizing the Cholesky
factors of H and AtH-1 Ar to solve the range-space equations (1.4) and (1.5) directly. This
method has been suggested with respect to general linearly constrained problems by Gill and
Murray (1974, pp. 77-78) and Goldfarb (1976), and with respect to quadratic programming by
Dax (1981).

We shall denote the required factorisations as

H H = RTR and AAH-Ar = UrUr., (2.1)

where R and Uh are upper-triangular matrices of dimension n X n and t. X th respectively.



2. A low-storag' method 3

Note that R needs to be computed only once, and may be overwritten on H. In this section,
all computations involving H are actually performed using R, but are represented in terms of
H for simplicity. The matrix AhH-IAT changes in a special way as constraints enter and leave
the working set. The associated update procedures for U1 will be summarized in this section;
complete details are given in the Appendix (see also Dax, 1981).

The fundamental relationship connecting the updated Cholesky factors is the following.
Consider the positive-definite symmetric matrix M with Cholesky factors UTU, and the related
positive-definite matrix Af defined by

M r(- , (2.2)

where m is a column vector and p a scalar. The Cholesky factor U of R? is given by

=( U u )  where UTu=m and p=I-u TSU (2.3)O0 P

(see Wilkinson, 1965, pp. 229-230 and Section A.2.1 of the Appendix). (If ft is positive definite,
_ Tu > 0.)

For the remainder of this section we shall drop the subscript k, so that, for example, A
denotes the matrix of constraints in the working set. Barred quantities will be associated with
a single change in the working set. We shall show that the vector X can be updated after every
change in the working set with very little work beyond that required to update the Cholesky
factor U. To demonstrate this, we require the following lemma, which we state without proof
(see, for example, Cottle, 1974).

Lemma 1. Let M (M = UTU) be a positive-definite symmetric matrix and b a vector, and let
z denote the solution of Mz = b. Consider the augmented matrix A( (A = 0O7) defined by
(2.2) and (2.3), and the vector I defined by

I =( ), (2.4)

where p is a scalar. f f is non-singular, then the solution of the system ]f = 9 is given by

whereT UT w=m, Uv=U, =p,.UTU and Mrz  
(2.5)

Adding a constraint to the working set. When a constraint is added to the working set, a new
row (say, aT) becomes the last row of A. The matrix AH.-IAT then has the form (2.2), with

M = AH-A T, m = AH- 1 a, and p = arH-1 a, (2.6)

so that its Cholesky factor 7 is given by (2.3).
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Given the updated Cholesky factor 1 following a constraint addition, it is easy to obtain the
updated vector of Lagrange multipliers, as shown in the following theorem.

Theorem 1. Let X and p denote the solutions to the range-space equations (1.4) and (1.5) at

the point z. Let f (Z = z + ap) be a point at which the row aT is added to A. Assume that

the updated Cholesky factor 0 of AH-IAT has been computed, so that u and p of (2.3) are

available. Then the Lagrange multiplier vector that solves (1.4) at 9 is given by the vector ),

whose elements are defined by

X,=X,-evu, j=1,2,...,t, and It+i=f, (2.7)

where v and C are defined by

Uv=u and f= ( 0 i).Tp

Proof. By construction of p and definition off,

A- 1 - AH-(# + altp) = AH-11 + aAp = AH- 1 g. (2.8)

Hence, Lemma I can be applied to the equations for X and X, and the form (2.7) follows directly.
Since 8 in (2.4) is given by aTH-11, it follows from (2.5) that the scalar C is given by

aTH-if- mTX (2.9)

Substituting the expression g + cHp for If and the definition of m from (2.6), the numerator of
(2.9) becomes

aTH-1l - MTX = GTH-l(g + alHp) - aTH- AT,

= arH-1 (alp - AT) + g).

Using (1.5), this expression further simplifies to (a - 1)arp. Hence, C - (a - 1),rp/p2.

Theorem 1 shows that jt 2 multiplications are required to update X when a constraint is added
to the working set.

Deleting a constraint from the working set. First, suppose that A is given by A with its last row
(denoted by 4T) deleted. In this case, the relationship between A -'AT and AH-AT is the
reverse of (2.2), and hence the new Cholesky factor is simply a submatrix of the old, i.e.

U ( (2.10)0p

The following theorem shows that the updated multiplier vector can be computed with little effort
in this case.

1
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Theren 2. Let X and p denote the solutions to the range-apace equations at the point x. Suppose
that the constraint corresponding to the last row of A is deleted from the working at at the point
9 = X + p. /f A denotes the matrix of constraints in the working set after the row has been
deleted, 0 denote the Cholesky factor of AH-'A, and a denotes the vector of the fast t - 1
elements in the last column of U, the vector of multipliers I computed at Z with the new working
set is given by

XyJ =- X' + Xtgj, J -1, 2,..., t - 1,

where U satisfes Ov = a.

Proof. Our assumption about the position of the deleted row means that

AH'A ,(H- ' r Aj H-1) (.11)ArltIA = armL r GrH-'a•

Since A solves (1.4) and (2.8) holds, we may apply Lemma 1 with AH-'Ar as M and AH-A T

as Af. This gives

X,

where AH -'Arv = __ 1

Because UrU = AH -A r , (2.10) and (2.11) imply that Ora = A -'a; since G =- Af-r-AT,
it follows that 9 may be obtained by solving the triangular system 17 0 O. =a

Theorem 2 implies that the vector X may be obtained in jt 2 multiplications.

In general, a row may be deleted from any position within A, so that Theorem 2 cannot
be applied directly. In this case, the rows of A are permuted to move the deleted row to the
last position and a sequence of plane rotations is applied to restore the permuted form of U to
upper-triangular form (see Section A.1 of the Appendix). In this case, the relationship between
U and 0 is of the form

where Q is a sequence of plane rotations and H is a permutation matrix. The number of
multiplications required to perform these rotations when the j-th constraint is deleted is 3(t-J?
(we assume the three-multiplication form of the plane rotations; see Gill et a1., 1974). Thus, the
essential features of Theorem 2 remain unchanged, the only difference being the need to reorder
the elements of X before updating.

Dieusedon of the low-storage method. Two advantages of this method are the relative simplicity
of the associated updates and the low storage requirements. Since R may be overwritten on the
space required to store H, the storage space required for this method (beyond that needed to
represent the problem) is of the order of it.2 locations, where tnI is the maximum number of
constraints in the worku4 set. In the case where there are always few constraints in the working
set, the method requires very little extra storage. The disadvantage of the method lies in the
possible magnification of any ill-conditioning in A and H during the implicit formation of the
product AH-A T .

The following table summarizes the number of multiplications needed to perform each com-
putation in the low-storage method.
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Update X Compute p Add constralt Delets ith constraint

8. Method 2: a better eonditioned method

The range-space equations (1.4) and (1.5) are not the best representation of p% and X% for purposes
of computation, since formation of the matrix AkH-lAr may exacerbate the conditioning of the
original problem. This difficulty may be lessened by rewriting the equations in terms of the LY
factorization of At, i.e.,

Ah= LAYh, (3.1)

* where the t columns of Y, are orthonormal n-vectors, and LA is a t X t lower-triangular matrix.
(The columns of , form an orthonormal basis for the range space of the rows of A,.)

Substituting (3.1) into (1.4) and (1.5), we obtain

LTX; = A (3.2)

Hp5 = Y,95 - gA, (3.3)
where 9k satisfies

YTH- 1 Y9 5 = YTH-'g. (3.4)

Equations (3.2) and (3.3) are theoretically equivalent to (1.4) and (1.5); however, they are likely
to have superior numerical properties, since the orthogonality of the columns of Yk means that
the condition number of YTH-YA; is no greater than that of H. The use of the factorization
(3.1) to derive a better conditioned projection matrix was suggested by Gill and Murray (1974,
pp. 78-79) in the context of general linearly constrained problems; see also Goldfarb (1976).

Computation of X% and ph from (3.2) and (3.3) may be implemented by storing the Cholesky
factors of H (which need be computed only once), and updating the LY factorization of At and
the Cholesky factors of YrH-IY5 as the working set changes. A detailed description of the
update procedures is given in Section A.2 of the Appendix. For simplicity, we shall drop the
subscript k in the rest of this section; barred quantities will denote those resulting from a single
change in the working set. Let U denote the Cholesky factor of YTH-Y, i.e.,

yTH-Y - UTU.

Adding a constraint to the working set. When a constraint is added to the working set, a new
row (say, aT) is added to A. The effect of this change on the LY factorisation is that a new
column is added to Y, so that I' is given by

F=(Y z).

In this case, the matrix YTH-If is of the augmented form R? (2.2), with

M=YTH-Y, m= YrH-1z and i =zTH-z.

Thus, exactly the same update procedures described in Theorem 2 can be applied to compute the
updated Cholesky factorisation of yTH-ly.

We now show that the vector 9 of (3.4) can be updated rather than recomputed, using a
technique similar to that given in Section 2.1 for updating X.
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Theorem 3. Let p and 0 denote the solutions to the equations (3.3) and (3.4) at the point x. Let
9 (Z = z + ap) be a point at which the row aT is added to A. Assume that the LY factorlsation
of A and the Cholesiy factor 0 of ?TH-1? have been computed. Let u and p denote the
corresponding portions of 7, as in (2.3), and let x denote the last column of 1. Then the vector
I that solves (3.4) at 9 is given by

- -- ,, j----1,S...,t, and i.+1= ,

where v and f are defined by

Uv =u and -- (a - ;)zTp

Proof. Since yTp = 0, the proof is essentially the same as for Theorem 1. i
Theorem 3 shows that jtP additional multiplications are needed to update 0 after a constraint

is added to the working set.

Deleting a constraint from the worldng set. When a constraint is deleted from the working set,
the LY factorisation of A may be updated as described in Section A.2.2 of the Appendix, using
a sequence of plane rotations that restore the lower-triangular form of L. The basic relationship
between Y and Y in this case is

yp=(? a), (3.5)

where the orthonormal matrix P is the product of suitably chosen plane rotations. We assume
that the Cholesky factor 7 of ?H-P r is available.

In this situation, the vector I can be computed with only a small amount of additional work
beyond that required to update L, Y and U, as indicated in the following theorem.

Theorem 4. Let 0 and p denote the solutions of (3.3) and (3.4) at the point x, and suppose that
a constraint is deleted from the working set at the point r = z + p. Assume that the updated
matrix ? in the LY factorization of A, the updated Cholesky factor 0 of FTH-l? and the
related vector a have been computed. Then the solution 1 of (3.4) at 2 is given by

with

w=PU and O7e6,

where P is defined in (3.5).

Proof. Multiplying (3.4) by PT and inserting 0 = Pw, we obtain

PTYTH-IYPw = (1'H P, YH-1 TH-1(.6
I Tjj-1p ITH-1, S\T H- 1 1

Since YTH-I, = YrH-l, the form of (3.6) shows that Lemma I can be invoked with ?'H-1'
and Y TH-IY taking the roles of M and ff respectively. It follows that

wgt
where 9 satisfies the single trianguar system Off = a.
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* Discusdon of the better conditioned method. The numerical advantage of Method 2 compared to

the low-storage method results from avoiding the use of )k in computing the search direction (see
(1.5)). If AH-Ah is ill-conditioned, the computed value of Xk may contain significant errors,
which may then propagate to pj. The accuracy of Ok in Method 2 depends on the conditioning of
YTH-lYh, which is no worse than that of H itself. A disadvantage of Method 2 is the additional
storage required for the n X tj matrix Yk and the t5 -dimensional triangular factor of YhIUYT,.
Furthermore, the updates required at each iteration are more cw4 ly than in Method 1 or 3 (see
Section 5).

The following table indicates the number of multiplications required to perf.rm each com-
putation during an iteration of Method 2.

Update 9 Compute p Compute X Add constraint Deete .th ostraint

t2  n+tt2 n+nt+t(t-+(t-

4. Method 8: the weighted Gram-Schmidt method

Following Bartels, Golub and Saunders (1970), we note that the range-space equations may be
solved using the factorizations

H = RTR and AAR "-C = (Lt 0 )Qk, (4.1)

" where R is the n X n Cholesky factor of H, LA is a tA; X tjk lower-triangular matrix, and Qk is
" an n X n orthogonal matrix. Note that A4H- 1Ar = LLT and therefore the transpose of La is

identical to the triangular matrix U (2.1) of Method 1.

The factorizations (4.1) provide a solution to the range-space equations (1.4) and (1.5) in the
form:

L LT>.A "-y!R-rgk, (4.2)

RpA = -Z-ZR g., (4.3)

where Y and Z5 are the n X tA and n x (n - tA) sections of the matrix QA, i.e.

Q=(Yr. ZA).

A variant of (4.1)-(4.3) has been used by Goldfarb and Idnani (1981), who recur the matrix
QrR-T .

We now propose an alternative method based on (4.1)-(4.3), in which we take advantage of
the identity ZZr = I - Y,Yf in order to avoid storing Z. In place of the full orthogonal
factorisation in (4.1), we utilize the weighted Gram-Schmidt factorisation

AtR-I = LtYr, (4.4)

which can be updated as described by Daniel et al. (1976) (see Section A.3 of the Appendix).



4. The weighted Gramm-Schmidt method

With this approach, X% could be recurred using the results of Theorems 1 and 2 (this follows
directly from the equivalence of U% and the transpose of Lh). However, we shall show that a more
efficient method may be obtained by recurring three vectors uh, uh and wk, which are defined by
the relations

RTuh = 9A, vA = Yu and wt = Y=vk - us. (4.5)

(Note that Yk t = 0.) Substitution into (4.2) and (4.3) allows X% and pA to be defined from

LTXA; = vu (4.6)
and

Rph = At. (4.7)

In practice, initial vectors uo, vo and wo are defined from (4.5) in terms of an initial point
xO and the weighted Gram-Schmidt factors of a corresponding initial working set Ao. (The point
zo must satisfy Aozo = bo.) Thereafter, the vectors uA, vA and mtw can be updated at negligible
cost, as we show below. The principal computational effort per iteration lies in updating the
factorization (4.4) as the working set changes, and in computing pt (and Xt when needed) from
(4.6) and (4.7).

As in the last two sections, we shall drop the subscript k and use barred quantities to denote
a single change in the working set.

Adding a constraint to the working set. When a constraint is added to the working set, a new
row (say, aT) becomes the last row of A. The relationship between the old and new matrices Y
and F of (4.4) is given by

=(Y z) (4.8)

(see Section A.3.1 of the Appendix). The following theorem describes how the quantities u, v and
p may be updated following a constraint addition.

Theorem 5. Let p denote the vector that satisfies the range-space equation (1.5) at the point z.
Let u, v and to satisfy (4.5) at the point z. Let f (Z = z + ap) be a point at which the row ar is
added to A. Assume that the updated factors L and F of A = LFTR have been computed, and
that z, the new last column of?, is available. The vectors u, v and o are updated as follows:

U) (4.9)
v')

(ii) U = , where v=,TG;

00i) ID =- (1 - a)m + V/Z.

Proof. Using (4.1), (4.7) and the quadratic nature of the objective function, we have

Rra =

= g + CHp

= RTu + cR TRp
= Rru + aRr,

and (4.9) follows immediately.
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To prove (ii), we use the definition of (, (4.8) and (4.9) to give

Since YTw = 0 and v = ry , this proves (i). Similarly,

*=Pu-o=(Y X)(")-(U+QW),

which reduces to (iii) after substituting Yv - u = t. w
Note that in a dual QP algorithm that retains dual feasibility, the steplength a = 1 will

usually be taken when a constraint is added to the working set; cases (i) and (iii) then simplify.
It further constraints are added at the same point, Theorem 5 remains true with a = 0, p = 0,
and w=0.

Deleting a eonstraint from the working set. When a constraint is deleted from the working set,
the relationship between the old and new matrices Y and F of (4.4) is given by

YP=( 1), (4.10)

where the orthonormal matrix P is the product of suitably chosen plane rotations (see Section
A.3.2 of the Appendix). The following theorem indicates how the quantities u, v and w may be
updated in this case.

Theorem 6. Let u, v and w satisfy (4.5) at the point z, and suppose that a constraint is deleted
from the working set at the point I = z + ap, where p satisfies (4.7). Assume that the updated
factors L and ? of A = LITR have been computed, so that the relationship between the old
and new orthogonal factors is given by (4.10). Then

(i) = u+ aw; (4.11)

(() = PT, where viTa; (4.12)

(M) I = (1 - a)w - v . (4.13)

Proof. Result (i) follows as in Theorem 5. To prove (ii), note that, since 9 - G, we may write

where v = ITO. Using (4.10) and (4.11) gives

()= P r YT(u+ aw)"

Since YTw =0 and YTu - u, this gives the desired result.



S. Conclusions 11

Finally, to prove (iii), we use the definition of 0 to write the identity

*di --=

Using (4.10), (4.11) and (4.12) gives

,r = yppw - -.

Since P is orthonormal and Yv - u = w, this expression simplifies to (4.13), as required. S
Note that a primal QP algorithm will usually delete a constraint only when a = 1, in which

case (i) and (i) simplify. If more than one constraint is deleted at the same point, the theorem
remains true with a = 0, p = 0 and w = 0.

Discuulon of the weigbted Gnu-Sehmidt method. The major storage required by the weighted
Gram-Schmidt (WGS) method beyond that for the low-storage method is for the n X t orthonormal
matrix Y%. The WGS method has a storage advantage compared to Method 2, since it requires
storage of only one t-dimensional triangular matrix. A numerical advantage of the WGS method
(as of Method 2) is that X1 is not used explicitly to compute Ph. However, the conditioning of
AR - 1 may be worse than that of Ak itself, and hence there may be more difficulties with the
factorisation (4.4) than with (3.1).

The following table gives the number of multiplications needed to perform each computation
in the weighted Gram-Schmidt method.

Compute p Compute X Add comstr int Delete f-th constraint

Ins its Jub'+.e. 3n-i)+2(,-%)2

5. Conlusions

Table 1 summarizes the major work (measured by multielications) associated with Methods 1, 2
and 3. In any active-set method, the quantities Az and Ap must be computed, where A contains
the constraints not already in the working set. In practice, the vector Ap is computed, and
Ax is updated using Af = Ax + aAp. The work needed to perform this operation (n(m - t)
multiplications) is not included in the table, since it is the same for all methods.

The table gives the multiplication counts for two types of iteration of a typical feasible-point
active-set QP method: (i) compute p and add a constraint; (ii) compute p, compute X and delete
a constraint. As indicated by the summary tables for each method, the amount of work required
to delete a constraint depends on the index of the constraint to be deleted. The figure in the
table corresponds to the case when the deleted constraint is the middle row of the working set
(i.e., has index it). The 'average' figure is the average work between iterations of type (i) and
(ii). The *average' value is given in a general form, and for three specific values of t (t = 0, in
and s), in order to indicate the relative efficiencies of the three methods.

Table 2 summarizes the factorisations used in each of the three methods, and the associated
storage requirements. The entries that define storage give the number of floating-point words
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TaMe 1

Summary of Work Required for Range-Space QP Methods

Cost to Method 1 Method 2 Method 3
(Low Storage) (Better Conditioned) (WGS)

Compute p. 2n 2+2itit2 2sn2+4nt+t2 2+2t
add constraint

Compute p and X, "snt+fjt na+ nt+ft in 1 2 +nt+t 2

delete constraint

Average in 2+jnt a is'+ "'+i+ +

Average (t = 0) 1.5n 2  1.5n2 .na

Average (t = ii) 2.52 v.n s  1.6n2

Average (t = n) 4.1s 6.3s 3.1ft2

TabMe 2

Summary of Storage Required for Range-Space QP Methods

Method 1 Method 2 Method 3
(Low Storage) (Better Conditioned) (WGS)

Storage for A mn Same same

Storage for H (RR) in Same Same

Additional factorlmatloas ATH-A = UrU A = Ly AR'-- I LYI
yTH-ly = UrU

M4ditboal storage it- t..+, . .
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required for a dense problem. The entry 'Same" means that the storage required is the same for
all methods.

If only one of the three methods were to be chosen for general use, we would favor the
choice of the weighted Gram-Schmidt method (Method 3). Its storage requirements are relatively
modest, and it tends to encounter relatively few difficulties with numerical stability. Although the
amount of storage required is more than that for Method 1, in our view the superior numerical
properties justify the additional storage cost. Method 2 is the most numerically stable, but
requires significant additional storage and work.

The methods described in this paper should be effective in solving QP problems with few
constraints whenever the size or structure of the Hessian is such that its Cholesky factors can
be computed and stored. Thus, these methods may be applied directly to large problems in
which the Hessian is suitably sparse and structured (for example, when the Hessian is diagonal
or banded).

Sparsity in the constraints will not ten'. to be helpful in Methods 1 and 3, since sparsity in
A does not carry over to the factorisations involving A. For Method 2, it might be possible to
compute a compact representation of Y if A is sparse.

If the available storage is sufficient for a t X t matrix but not an va X t matrix, Method I is the
only possible choice. If an n x t matrix may be stored, any of the methods may be used. Unless
numerical stability is of critical importance, Method 2 would generally not be considered. The
choice between Methods 1 and 3 depends on the relative ease with which the system of equations
Hz: = b can be solved given a factorisation of H. Methods 1 and 3 are similar in efliciency if this
process requires between at and 2st operations; Method 1 is preferred if the number of operations
is less than at, and Method 3 if the number is greater than 2tt.
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Appendix - Mothode Vt! modifying matrix fbtouizatkons

In this Appendix we shall outline techniques for updating the matrix factorizations associated
with a t X n matrix A and the n X t orthonormal matrix Y that forms a basis for the range space
of the rows of A. The discussion is roughly divided into two parts (although much of the basic
theory is common to both parts). In the first part, we consider how to update the factorizations

A = LYT and YTMY = UTU, (Al)

where M is an n X n positive-definite symmetric matrix and U is a t X t upper-triangular matrix,
when row changes are made to the matrix A.

In the second part we are concerned with updates following a row change in A of the
factorization

A = LYTR,

where H is an n X s symmetric positive-definite matrix with Cholesky factor R (so that H -
RTR), and L is a t X t lower-triangular matrix.

Some of the procedures described here are simple extensions of those described by Gill et aW.
(1974) and Daniel et a. (1976). Some methods that have been described previously are repeated
here for completeness.

The discussion of the modifications will assume a general familiarity with the properties of
plane rotations. Sequences of plane rotations are used to introduce zeros into appropriate positions
of a vector or matrix, and have exceptional properties of numerical stability (see, e.g., Wilkinson,
1965, pp. 47-48). Throughout the Appendix we shall assume the three-multiplication form of a
plane rotation; see Gill et al. (1974).

We shall illustrate each modification process using sequences of simple diagrams, following
the conventions of Cox (1981) to show the effects of the plane rotations. Each diagram depicts
the changes resulting from one plane rotation. The following symbols are used:

X denotes a non-zero element that is not altered;
m denotes a non-zero element that is modified;
f denotes a previously zero element that is filled in;
0 denotes a previously non-zero element that is annihilated; and

(or blank) denotes a zero element that is unaltered.

In the algebraic representation of the updates, barred quantities will represent the 'new" values.

A.1. A basic tool - updating after a column permutation

One of the basic operations in updating factorizations is the need to restore a matrix to triangular
O! form after one of its rows or columns is moved to the first or last position. We shall illustrate

this operation in the case where it is required to move an arbitrary column of an upper-triangular

matrix R to the last position. There is no loss of generality if we consider moving the first column
to the last position (this is the most expensive case to consider).

A.1.1. Method Is using a eolumna hieehange. Suppose that 17 Is a permutation matrix that
interchanges the first and last columns of R. We shall use a 5 X 5 example to illustrate the

1
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column interchange. The permuted matrix has the form

X X X X

x X

~X

We transform RHI to upper-triangular form in two stages. First, we apply a sequence of plane
rotations on the left so that the "vertical spike' of nonzero sub-diagonal elements is transformed
into a "horizontal spike'. The horizontal spike is eliminated with another sequence of plane
rotations applied on the left.

To eliminate the vertical spike, a backward sweep of plane rotations is applied to the rows of
RH in the planes (n, n - 1), (n, n - 2),..., (n, 2). We illustrate the effect of the transformation
on the 5 X 5 example.

X X X X X K K X X X X X K X X X X X X X

X X X X X X X X X X x X 0 m M m

X X X -- X X - 0 Im - X x

x x 0 m x X

X In f m f m m f mm

The resulting matrix is restored to upper-triangular form by a forward sweep of (row) rotations
in the planes (1, n), (2, n),..., (n - 1, n). In the 5 X 5 case we have

K K K K K m mm mm K K K K K K K K K K K K K K K

K K K K K K m m f mK K K K K K K K
X K -- K K -- KI mm nk I - x X X

x X x x M f

X X X X 0 m m M f •0 mM a • m m . m

If both sweeps of plane rotations are denoted by a single orthonormal matrix P, we have

A=PRH. (A2)

A.1.2. Method 2: using column shifts. There are other permutation matrices 7 that will move
the first column of R to the last position. A more common method is to move the first column
to the last position and shift all the remaining columns one position to the left. In this cae, the
permuted matrix has the upper-Hesenberg form

RH= X XX XJ

This matrix is restored to upper-triangular form by a forward sweep of row rotations applied on
the left to eliminate the subdiagonal elements, as shown in the following diagram.
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X X X X 0 IR m f In Im I a X X x• X X x

XXX - K -- O -- mim I In X X X

X X x X X x 0 i rf mm

X x x x 0 f

The resulting transformation is of the form (A2) except that P comprises a single sweep of
rotations instead of a double sweep.

A..8& Discussion. Clearly, the updating techniques of the last two sections are intimately related.
(For example, in Section A.1.2 the transformation of the upper-Hessenberg matrix to triangular
form could have been effected by first applying the permutation that moves the first row to the
last position and shifts the remaining rows up by one position. The intermediate matrix is then
triangular, with a whorizontal spike* in the last row. The spike can be eliminated using the
method of Section A.I.1.) We have considered these transformations separately because each of
the two methods will be most suitable under some circumstances. For example, the rotations
used to transform R may also be applied to another matrix that itself must be maintained in
some specific form (this is the case for the methods described in Section A.3). In another case,
the triangular matrix may need to be stored as a one-dimensional array for maximum efficiency
in some high-level computer languages. In this case, Method 1 would be most suitable because
no new elements are created outside the triangular structure (except for the spikes, which can be
held in a work vector).

If there is no overriding reason to use one method or the other, the decision may be influenced
by other factors. For example, although Method 1 requires two sweeps of (row) rotations, some of
the elements in the vertical and horizontal spikes could be zero, in which case the corresponding
rotations may be skipped. In contrast, although Method 2 appears to require just one row sweep,
the operations involved in shifting the columns one position to the left should be regarded as
being equivalent to a sweep of 'cheap' column rotations. Also, assuming R to be nonsingular,
the rotations in the subsequent row sweep can never be skipped (although some of them could be
simple interchanges).

In the last two sections we have shown that the restoration of a triangular matrix to triangular
form after a row or column permutation implicitly or explicitly involves the application of plane
rotations to one or more of the following three types of matrix:

(R) -horizontal spike"

(V R) -vertical spike" (A3)

(R v) 'upper-Hessenbere' (A4)

The structure typified by these three standard caes will occur repeatedly in later sections.

A.2. Updating the fete of A and Y'MY

A.2.1. Adding a ew row to .A. When a new row is added to A, the row dimension of L and the
colmn dimension of Y in (AI) both increase by one. Without loss of generality we shall assume
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that A is a t X n matrix, and that the new row is added in the last position, i.e.,

a
T /

The computation of the new column of Y is equivalent to a single step of the row-wise computa-
tion of the orthogonal factorization of A by the modified Gram-Schmidt algorithm. The new
orthogonal factor ? is defined as

=(Y z), (A)

where z is given by a multiple of the vector a orthogonalised with respect to the orthonormal set
of columns of Y, i.e. z = r(I - yyT)a, where r is a normalizing factor. For more details of the
computation of x, including the use of reorthogonalization, see Daniel et al. (1976).

Given z, the new row of L is found from the identity

A =( i.)=(Lj :)(y"), (AG)

where the vector I and scalar y are to be determined. The last row of this identity gives

a = Y1 +'Z. (A7)

Premultiplication of this equation by yT gives I = YTa because of the orthogonality of the
• columns of (Y z1. Similarly, premultiplication of (A7) by z r gives 7 = sa.

The relationship (AS) implies that

YTMY zrMz

The Cholesky factor 7 of ?TM? is given by

u=(U U), where UTU=yTM, and p2=TMZ-UT0 P

(see Wilkinson, 1965, pp. 229-230). If PT M? is positive definite, ,TM, - uru > 0.
The work necessary to update the factors L, Y and U when adding a new row to a t X na

matrix A is dominated by the jt 2 + n2 + at multiplications necessary to form u and p, and the
2(k + l)nt multiplications necessary to form z and the new row of L, where k (k > 0) is the
number of reorthogonalization steps required. For well conditioned problems, reorthogonalisation
is usually not required.

A.2.2. Deleting a row from A. Suppose now that a row (say, the i-th) is deleted from a t X n
matrix A, so that the row dimension of A, the column dimension of Y and the dimension of L
in (Al) are decreased by one. The method given in the last section for adding a row to a matrix
implies that if the last row of A is deleted, the new factors are identical to the old except that
the last column of Y and row and column of L are omitted. Consequently, in the general case,
the only nontrivial work necessary to perform a column deletion is that required to update the
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factors after the deleted column is moved to the last position. We shall show that this updating
can be achieved using the methods of Section A.1.

From (Al), we have

A~ = gyro, (AS)

where S is a t X t matrix that is identical to L except that the i-th row is moved to the last
position and all the remaining rows have been shifted upwards. For example, in the case t = 6
and i = 3, we have

: X

X X X x

S X X X XX

' X X X X X X

The matrix comprising the last t- i + I columns of S is the transpose of a matrix of the form
(A4) and it may be restored to lower-triangular form using a forward sweep of column rotations
(say, P) as in Method 2 of Section A.1.2. The effect of these rotations is to give the factorisation

(A )LpTyT.

where L is a t X t lower-triangular matrix. Let L and the product YP be partitioned so that

L=(1 L 0 ), and YP=( ) (Ag)

where L is a (t - 1) X (t - 1) lower-triangular matrix,? is an n X (t - 1) orthogonal matrix,
and I is an n-vector. A comparison of (Ag) with (A6) shows that A = L T as required.

The plane rotations applied to Y also transform the Cholesky factor U of YTMY. The
order of the rotations in P has been chosen so that each transformation introduces a single new
subdiagonal element in the upper-triangular matrix U, as shown in the following sequence of
diagrams.

xx xxx x x xmxx xxxmmx xx xxmm
x X N X X X X YM X X X X X In i X KX X X m

xX X X X rm X X X mm X Xxmm

-. - -=4

xxx rmxx xmmx xxmm

xx xx f x m
x x x m

The transformed matrix UP is now in upper-Hesenberg form similar to (A4). As described
in Section A.1.2, this matrix may be restored to upper-triangular form by a (partial) sweep of row
rotations (say, the matrix Q), which is applied on the left to eliminate the subdiagonal elements.

The relationship between U and its transformed version is

QUP=( 0)
where 17 is the upper-triangular factor of P TMP.

The work associated with deleting a row from A comprises 1(t-,)' multiplications to restore
5, 8n(t - s) multiplications to compute YP, and 3(t - sJ2 multiplications for the two sweeps of
rotations applied to U.
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A.8. Updating the factorization A = LYTrR

A.3.1. Adding a row to A. When a new row is added to A, the row dimension of L and the
column dimension of Y both increase by one. Suppose that A is a t X n matrix. If the row is
added to the last position, the updating of Y and L is identical to that described in Section A.2.1.
In this case the new column z is given by a multiple of the vector R-Ta orthogonalized with
respect to the orthonormal set of columns of Y, i.e. z = r(J - yy)q, where q satisfies RTq = a
and r is a normalizing factor.

The number of multiplications associated with adding a new row to A includes the following
(where only the highest-order term is given): jn 2 to form q, and 2(k + 1)nt to form z and the
new row of L, where k is the number of reorthogonalisation steps required.

A.3.2. Deleting a row from A. If the i-th row, say a, is deleted from a t X n matrix A, the
column dimension of Y and the dimension of L are decreased by one. (As in Section A.3.1, the
dimension of R is unaltered.) The method used to update the factors is identical to that given
in Section A.2.2, except that it is not necessary to select P so that the structure of the factor U
is maintained. In particular, the factorisation

I~a (~ YR,

analogous to (AS) may be obtained by interchanging the i-th and t-th rows of A. In this case,
the matrix S has a form similar to the transpose of (A3) and may be reduced to lower-triangular
form by Method 2 of Section A.1.1.

The work associated with deleting the i-th row from A comprises 3(t - s2 multiplications to
triangularise S and 3n(t - s) multiplications to compute YP.
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